Zigbee Module Group Introduction — Tuya TYZS11 Zigbee

Zigbee Module Group Introduction — TYZS11

1. Product Overview

TYZS11 is a low power-consuming embedded Zigbee module developed by Hangzhou Tuya Information Technology Co., Ltd. It consists of a highly integrated wireless radio processor chip (EFR32MG13P732) and several peripherals, with a built-in 802.15.4 PHY/MAC Zigbee network protocol stack and robust library functions. TYZS11 is embedded with a low power-consuming 32-bit ARM Cortex-M4 core, 512 KB flash, 64 KB RAM data memory, and robust peripheral resources. TYZS11 runs on the FreeRTOS platform that integrates all Zigbee MAC library functions. You can develop built-in Zigbee products as required. Figure 1 shows the architecture of TYZS11.

Figure 1 TYZS11 architecture

1.1 Features

  • Built-in low power-consuming 32-bit ARM Cortex-M4 core with DSP instructions and floating-point unit functioning as an application processor Basic frequency: 40 MHz supported
  • Wide working voltage: 1.8 V to 3.8 V
  • Peripherals: 12 GPIOs, one UART, and one ADC
  • Zigbee features 802.15.4 MAC/PHY supported Working channel: 11 to 26 @2.400 GHz to 2.483 GHz, with an air interface rate of 250 kbit/s Built-in DC-DC circuit, maximizing the power-supply efficiency Maximum output power: +19 dBm; dynamic difference of output power: > 35 dB Power consumption when TYZS11 is working: 63 uA/MHz; current when TYZS11 is in the sleep state: 1.4 uA Proactive network configuration for terminals Copper column antenna and onboard PCB antenna Working temperature: -40°C to 85°C AES 128/256-based hardware encryption

1.2 Major Application Fields

  • Intelligent building
  • Intelligent home and household applications
  • Intelligent socket and light
  • Industrial wireless control
  • Health care and measurement
  • Asset tracing

2. Module Interfaces

2.1 Dimensions and Footprint

TYZS11 provides three rows of pins with the distance of 1.0 mm between every two pins.

TYZS11 dimension: 15.3 mm (W) x 22 mm (L) x 2 mm (H). Figure 2 shows the overall pin layout of TYZS11.

Figure 2 Front view of TYZS11

2.2 Pin Definition

Table 1 describes the interface pins. Table 1 TYZS11 interface pins

No. Symbol I/O Type Functions
1, 2, 11, 12, 13, and 17 GND P Module reference ground pins
19, 22, and 27
3 GPIO3 I/O Corresponds to PD15 pin of the IC and functions as a GPIO.
4 PF3 I/O PF3 pin of the IC and functions as a GPIO.
5 SWCLK I/O JLINK SWCLK programming pin, which can also be used as a GPIO in normal programs.
6 SWDIO I/O JLINK SWDIO programming pin, which can also be used as a GPIO in normal programs.
7 ADC AI ADC port 1, corresponding to PB11 pin of the IC. ADC is a 12-bit precision SAR analog-to-digital converter.
8 and 18 3.3 V P Power-supply pins of TYZS11 (typical power-supply voltage: 3.3 V)
9 SWO I/O Corresponds to PF2 pin of the IC and functions as a GPIO. It can be used as an output pin when J-Link is used.
10 PF6 I/O Corresponds to PF6 pin of the IC and functions as a GPIO.
14 UART_TXD O UART0_TXD communication interface, corresponding to PA0 pin of the IC.
15 UART_RXD I UART0_RXD communication interface, corresponding to PA1 pin of the IC.
16 PD14 I/O Corresponds to PD14 pin of the IC and functions as a GPIO.
20 PWM3 I/O Corresponds to PF4 pin of the IC and functions as a light drive interface. It can also be configured as a GPIO.
21 PWM2 I/O Corresponds to PA2 pin of the IC and functions as a light drive interface. It can also be configured as a GPIO.
23 nRST I Hardware reset pin, and the chip is reset when the level is low. TYZS11 has a power-on reset function, and this pin is not necessary in the actual situation.
24 GPIO2 I/O Corresponds to PA5 pin of the IC and functions as a GPIO.
25 GPIO0 I/O Corresponds to PA3 pin of the IC and functions as a GPIO.
26 PWM1 I/O Corresponds to PF5 pin of the IC and functions as a light drive interface. It can also be configured as a GPIO.

Note: P indicates power-supply pins, I/O indicates input/output pins, and AI indicates analog input pins.

nRST is only a module hardware reset pin, which cannot clear the Zigbee network configuration.

This pin can only be used as the ADC interface and cannot be used as the common I/O pin. If this pin is not used, it must be disconnected. When this pin is used as the ADC input interface, the input voltage range must be 0–AVDD, which can be configured using software.

2.3 Test Pin Definition

Table 2 describes the test pins. Table 2 TYZS11 test pins

No. Symbol I/O Type Functions
- - I Used for the module production test.

Note: It is recommended that test pins not be used.

3. Electrical Characteristics

3.1 Absolute Electrical Characteristics

Table 3Absolute electrical characteristics

Parameter Description Minimum Value Maximum Value Unit
Ts Storage temperature -50 150 °C
VCC Power-supply voltage -0.3 3.8 V
Static electricity voltage (human model) TAMB -25°C - 2.5 kV
Static electricity voltage (machine model) TAMB -25°C - 0.5 kV

3.2 Electrical Conditions

Table 4 Normal electrical conditions

Parameter Description Minimum Value Typical Value Maximum Value Unit
Ta Working temperature -40 - 85 °C
VCC Working voltage 1.8 3.3 3.8 V
VIL I/O low-level input -0.3 - VCC x 0.25 V
VIH I/O high-level input VCC x 0.75 - VCC V
VOL I/O low-level output - - VCC x 0.1 V
VOH I/O high-level output VCC x 0.8 - VCC V
Imax I/O drive current - - 12 mA

3.3 Zigbee TX Power Consumption

Table 5 TX power consumption during constant emission

Symbol Rate TX power Typical Value Unit
IRF 250 kbit/s +19 dBm 120 mA
IRF 250 kbit/s +13 dBm 50 mA
IRF 250 kbit/s +10 dBm 32 mA
IRF 250 kbit/s +4 dBm 17 mA
IRF 250 kbit/s +1 dBm 11.8 mA

Note: When the preceding data is being tested, the duty cycle is set to 100%.

3.4 Zigbee RX Power Consumption

Table 6 RX power consumption during constant receiving

Symbol Rate Typical Value Unit
IRF 250 kbit/s 8 mA

Note: When the UART is in the active state, the received current is 14 mA.

3.5 Power Consumption in Operating Mode

Table 7 TYZS11 working current

Working Mode Working Status (Ta = 25°C) Average Value Maximum Value Unit
EZ mode The module is in the EZ state. 10 40 mA
Operation mode The module is in the connected state. 3 5 mA
Deep sleep mode The module is in the deep sleep mode, with the 64 KB flash. 1.4 3 uA

4. RF Features

4.1 Basic RF Features

Table 8 Basic RF features

Parameter Description
Frequency band 2.400 GHz to 2.484 GHz
Physical-layer standard IEEE 802.15.4
Data transmitting rate 250 kbit/s
Antenna type External copper column spring antenna and onboard PCB antenna
Line-of-sight transmission distance > 120 m

4.2 Zigbee Output Performance

Table 9 TX continuous transmission performance

Parameter Minimum Value Typical Value Maximum Value Unit
Maximum output power - +19 - dBm
Minimum output power - -30 - dBm
Output power adjustment step - 0.5 1 dB
Frequency error -15 - +15 ppm
Output spectrum adjacent-channel rejection ratio -31 dBc

Note: The maximum output power can reach +19 dBm. The power output can be adjusted under normal use. The high-power output can be used for overlay transmission in extremely complex conditions, such as modules embedded in a wall.

4.3 Zigbee RX Sensitivity

Table 10 RX sensitivity

Parameter Minimum Value Typical Value Maximum Value Unit
PER < 10%, RX sensitivity, 250 kbit/s@OQPSK - -102 - dBm

5. Antenna Information

5.1 Antenna Types

By default, the onboard PCB antenna is used. It can be connected to an external copper spring antenna using a connector, which is used for wireless extended coverage in complex installation conditions.

5.2 Antenna Interference Reduction

When you use a copper column antenna on a Zigbee module, make sure that the antenna on the module is at least 15 mm away from other metal parts to ensure optimal wireless performance. It is recommended that the antenna location on the PCB be hollowed out.

To prevent negative effect on antenna radiation performance, do not route copper or cable wires along the antenna area of the user PCB board.

6. Packaging Information and Production Instructions

6.1 Mechanical Dimensions

Figure 3 Mechanical dimensions of TYZS11

Figure 4 TYZS11 schematic diagram and pin connection

Comply with the encapsulation diagram provided in Figure 5. Figure 5 Encapsulation diagram of TYZS11

6.3 Production Instructions

The factory storage conditions are as follows:

1.The anti-moisture bag must be stored in an environment with a temperature of less than 30° C and humidity of less than 85% RH.

2.The shelf life of a dry-packaged product is six months from the date when the product is packaged and sealed. Note: 1.During the whole process of production, the operator of each station must wear an electrostatic ring and electrostatic clothing. 2.During the operation, strictly protect the module from water and strains.

400 Call

Consult

400-881-8611